Photochemical Activation of CO₂ on Rh^I(CO)₂/Al₂O₃-CO₂ Dissociation and Oxygen Atom Exchange

Edward A. Wovchko and John T. Yates, Jr.

Contribution from the Surface Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Received February 5, 1998

Abstract: The ultraviolet (3.8 eV) photolysis of atomically dispersed $Rh^{I}({}^{13}C{}^{18}O)_2$ species supported on an Al_2O_3 surface in the presence of CO_2 at 256 K has been studied by infrared spectroscopy (FTIR). Carbon dioxide is activated on photochemically produced Rh^I(¹³C¹⁸O) sites to produce various isotopically labeled rhodium gem-dicarbonyl species. The two major products of CO₂ activation exhibit infrared bands at 2077 and 1958 cm⁻¹ assigned to Rh^I($^{12}C^{16}O$)($^{13}C^{18}O$) species and bands at 2036 cm⁻¹ and near 1958 cm⁻¹ assigned to $Rh^{I}(^{13}C^{16}O)(^{13}C^{18}O)$. The infrared band assignments for the isotopic rhodium gem-dicarbonyl species are supported by a thermally driven isotopic exchange experiment with ${}^{13}C^{16}O(g)$ and by a comparison to the frequencies predicted with frequency calculations based on known force constants. Two dissociation pathways are proposed for CO_2 coordinated on Rh^I(¹³C¹⁸O) sites. Path I involves direct dissociation of the C–O bond in CO_2 and Path II involves oxygen atom exchange between CO_2 and CO ligands, followed by C-O bond dissociation in the CO₂ ligand which was produced by the O exchange process. The lack of formation of oxidized rhodium carbonyl species during CO₂ activation suggests that CO₂ temporarily coordinates to Rh^I-(CO) with η^1 bonding. This work demonstrates the first steps of a potential low-temperature route for the conversion of CO₂ into other molecules on catalyst sites using ultraviolet light as an energy source.

1. Introduction

The thermodynamic stability of CO₂ contributes to the general lack of commercial processes that utilize CO₂ as a feedstock. One method of overcoming the stability is to utilize ultraviolet light as an alternative source of energy to conventional thermal energy sources. The photochemical production of surface sites, capable of activating bonds such as the C-H bond in alkanes, and the C-O bond in CO₂ provides an interesting and potentially useful route to the utilization of methane and CO₂ as feedstocks to other useful products. We have carried out experiments to study heterogeneous phase bond activation using the species $Rh^{I}(CO)_{2}$, on $Al_{2}O_{3}$ supports (designated $Rh^{I}(CO)_{2}$ / Al₂O₃). By photolyzing the Rh^I(CO)₂ species with 325 nm (3.8 eV) ultraviolet light at low temperatures (<300 K), a CO ligand is easily detached to produce a monocarbonyl species, Rh^I(CO). This proposed 16-electron coordinatively unsaturated Rh^I center adsorbs dinitrogen,¹ and breaks the C-H bond in alkanes²⁻⁵ and the H-H bond in hydrogen.⁶ In this study, we have successfully activated the C-O bond of carbon dioxide using the photochemical production of Rh^I(CO) sites.

Several recent reviews discuss the chemistry of CO₂ on metal and metal oxide surfaces^{7,8} as well as the coordination and chemistry of CO₂ with transition metal complexes.⁹⁻¹¹ Dissociation of CO₂ occurs on several metal surfaces, including Fe, Ni, Re, Al, and Mg, but to little or no extent on Pt and pure

- (6) Wovchko, E. A.; Yates, J. T., Jr. J. Am. Chem. Soc. 1995, 117, 12557.
- (7) Freund, H.-J.; Roberts, M. W. Surf. Sci. Rep. 1996, 25, 225.

(9) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

Rh.^{7,8} In the presence of alkali metals such as potassium, CO₂ dissociation on Rh occurs readily.¹² Photoexcitation of alkalipromoted Rh surfaces also causes adsorbed CO₂ dissociation through substrate-mediated excitation; however, no dissociation was observed on a clean Rh surface.¹³ It is suggested that dissociation occurs via electron transfer from the alkali metal/ Rh surface to create $CO_2^{\delta-}$ anions with a bent geometry.^{7,8,13} The surface-coordinated CO₂ molecule is then subject to activation and subsequent reaction with other adsorbates. There are numerous examples of organometallic compounds that involve transition metals containing CO_2 ligands.⁹⁻¹¹ However. only a few fully characterized examples of CO2 directly coordinated to a single Rh center are reported.^{9-11,14-16} The best example of a rhodium η^1 -CO₂ complex is Rh(diars)₂(Cl)- (CO_2) [diars = *o*-phenylene-bis(dimethylarsine)] reported by Herskovitz and co-workers.¹⁴ There have been few reports of the photochemistry of transition metal-carbon dioxide complexes.⁹ One study, involving the photolysis of $Cp_2Mo(CO_2)$ in the presence of CO₂, resulted in the formation of Cp₂Mo- (CO_3) , $Cp_2Mo(CO)$ and $CO.^{17}$

There have been several studies of the CO₂ adsorption on supported Rh catalysts.^{18–20} No dissociation of CO_2 was

- (12) Kiss, J.; Révész, K.; Solymosi, F. Surf. Sci. 1988, 207, 36.
- (13) Solymosi, F.; Klivényi, G. J. Phys. Chem. 1994, 98, 8061.

- (15) Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics 1996, 15, 1839.
 - (16) Aresta, M.; Nobile, C. F. Inorg. Chim. Acta 1977, 24, L49.
- (17) Belmore, K. A.; Vanderpool, R. A.; Tsai, J.-C.; Khan, M. A.;
- Nicholas, K. M. J. Am. Chem. Soc. 1988, 110, 2004. (18) Solymosi, F.; Erdöhelyi, A.; Kocsis, M. J. Catal. 1980, 65, 428.
 - (19) Henderson, M. A.; Worley, S. D. Surf. Sci. 1985, 149, L1.

⁽¹⁾ Wovchko, E. A.; Yates, J. T., Jr. J. Am. Chem. Soc. 1996, 118, 10250.

⁽²⁾ Ballinger, T. H.; Yates, J. T., Jr. J. Am. Chem. Soc. 1992, 114, 10074.

⁽³⁾ Ballinger, T. H.; Yates, J. T., Jr. J. Phys. Chem. 1992, 96, 9979.
(4) Wong, J. C. S.; Yates, J. T., Jr. J. Am. Chem. Soc. 1994, 116, 1610.

⁽⁵⁾ Wong, J. C. S.; Yates, J. T., Jr. J. Phys. Chem. 1995, 99, 12640.

⁽⁸⁾ Solymosi, F. J. Mol. Catal. 1991, 65, 337.

⁽¹⁰⁾ Leitner, W. Coord. Chem. Rev. 1996, 153, 257.

⁽¹¹⁾ Behr, A. Carbon Dioxide Activation by Metal Complexes; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1988.

⁽¹⁴⁾ Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914.

observed on clean samples at 300 K. Hydrogenation of CO_2 into methane occurs at elevated temperature (>300 K) and to a greater extent at temperatures near 500 K.^{18,20,21} Various rhodium carbonyl species were detected as a result of CO_2 dissociation during a reaction with hydrogen. A considerable amount of research has been conducted on the reforming of methane with CO_2 into synthesis gas (H₂ + CO).^{22–26} The conversion takes place on a variety of catalysts including supported rhodium, but temperatures around 1000 K are necessary. The above studies demonstrate the need for an alternative method to activate CO_2 on supported catalysts.

In this paper, we have employed infrared spectroscopy and ultrahigh vacuum techniques to investigate the ultraviolet photolysis of $Rh^{I}({}^{13}C^{18}O)_2/Al_2O_3$ in the presence of carbon dioxide at 256 K. Carbon dioxide dissociation occurs on the atomically dispersed photochemically generated RhI(13C18O) species leading ultimately to the production of RhI(12C16O)- $(^{13}C^{18}O)$ and, through oxygen-atom exchange, Rh^I $(^{13}C^{16}O)$ - $(^{13}C^{18}O)$ species. The latter species are identified by comparing infrared spectra measured during photolysis to those measured during a thermal exchange of isotopically labeled ¹³C¹⁶O gas with $Rh^{I}(^{13}C^{18}O)_{2}$. Assignments of the various isotopomers of Rh^I(CO)₂ are supported by comparing infrared band frequencies to the predicted normal-mode frequencies of $Rh^{I}(CO)_{2}(C_{2\nu})$ by using force constant calculations. The CO₂ activation was also compared to the photochemically assisted oxidation by O_2 of Rh^I(¹³C¹⁸O)₂/Al₂O₃. A mechanism for CO₂ activation on Rh^I-(CO) sites is proposed.

2. Experimental Section

Experiments were conducted in the special transmission infrared cell described in detail previously.^{27,28} The cell is a stainless steel cube with six conflat flange ports. KBr windows, sealed with differentially pumped double O-rings, were used on two ports for infrared beam transmission. A UV-grade quartz window was used for ultraviolet irradiation. Samples were spray deposited on a tungsten support grid (0.0254 mm thick with 0.22 mm square openings exhibiting 70% optical transparency). The grid was secured by nickel clamps and mounted on electrical feedthroughs mounted on the bottom of a reentrant Dewar that enters the cell. The sample was heated electrically with a digital temperature programmer/controller.²⁹ For CO₂ activation experiments, sample cooling was achieved by filling the reentrant Dewar with an ethanol slush cooled by inserting a tube conducting a mixture of flowing N₂ liquid and gas. For O₂ activation in separate experiments, the Dewar was filled with liquid nitrogen. Sample temperatures were measured by a K-type thermocouple spot welded on the top center of the tungsten grid. The temperature could be held constant and maintained to ± 2 K in the range 150 to 1500 K. The cell was connected via stainless steel bellows tubing to a bakeable stainless steel vacuum and gas delivery system. The system was pumped by 60 L s⁻¹ turbomolecular and 30 L s⁻¹ ion pumps, achieving base pressures $< 1 \times 10^{-8}$ Torr. The system was equipped with a Dycor M100M quadrupole mass spectrometer for

(20) Solymosi, F.; Pásztor, M. J. Catal. 1987, 104, 312.

(21) Henderson, M. A.; Worley, S. D. J. Phys. Chem. 1985, 89, 1417.
 (22) Edwards, J. H.; Maitra, A. M. Fuel Processing Technol. 1995, 42, 269.

(23) Wang, S.; Lu, G. Q. (Max); Millar, G. J. Energy Fuels 1996, 10, 896.

(24) Muir, J. F.; Hogan, R. E., Jr.; Skocypec, R. D.; Buck, R. Solar Energy 1994, 52, 467.

(25) Erdöhelyi, A.; Cserényi, J.; Solymosi, F. J. Catal. 1993, 141, 287.
(26) Bhat, R. N.; Sachtler, W. M. H. Appl. Catal. A: Gen. 1997, 150, 279

(27) Basu, P.; Ballinger, T. H.; Yates, J. T., Jr. Rev. Sci. Instrum. 1988, 59, 1321.

(28) Wong, J. C. S.; Linsebigler, A.; Lu, G.; Fan, J.; Yates, J. T., Jr. J. Phys. Chem. 1995, 99, 335.

(29) Muha, R. J.; Gates, S. M.; Yates, J. T., Jr.; Basu, P. *Rev. Sci. Instrum.* **1985**, *56*, 613. gas analysis and leak checking. Gas pressures were measured with a MKS 116A Baratron capacitance manometer.

The 0.5% Rh/Al₂O₃ samples were prepared by dissolving RhCl₃· $3H_2O$ (Alfa 99.9%) in ultrapure H_2O (10 mL/g of support). The solution was mixed with the appropriate amount of powdered Al₂O₃ (Degussa, 101 m²/g) and ultrasonically dispersed for approximately 45 min. This slurry was mixed with acetone (Mallinckrodt, AR) (9/1 acetone/H₂O volume ratio) and sprayed onto the tungsten grid with a nitrogen-gas pressured atomizer. The grid was warm (~330 K) and spraying was interrupted intermittently to allow for solvent evaporation. The mixture was sprayed on a 2/3 section (3.0 cm²) of the grid leaving a shielded 1/3 (1.5 cm²) section clear for background scans. Deposit weights ranged from 28.5 to 29.1 mg (9.5 to 9.7 mg/cm²) depending on the spraying time.

Immediately after spraying, the sample was transferred to the infrared cell and evacuated at 475 K for 16–20 h. Following evacuation the sample was reduced at 475 K with three 175 Torr H₂ exposures of 15 min each, and one 200 Torr H₂ exposure of 60 min duration with evacuation after each exposure. The sample was evacuated at 475 K for another 18 to 20 h then cooled to 303 K and exposed to 5 Torr of $^{13}C^{18}O$ for 10 min to convert the metallic Rh to Rh^I($^{13}C^{18}O$)₂. The cell was evacuated and the sample was cooled to 238 K prior to carbon dioxide addition (and 110 K prior to O₂ addition). After addition, the sample was warmed to 256 K (181 K for the O₂ experiment). The temperature never exceeded 258 K during each experiment.

Infrared spectra were measured by using a nitrogen-gas purged Mattson Research Series I Fourier transform infrared spectrometer equipped with a liquid nitrogen cooled HgCdTe wide band detector. Spectra were recorded by averaging 250 scans at 4 cm⁻¹ spectral resolution, respectively. The cell was translated laterally so the beam could pass through the unsprayed portion of the grid to obtain the background spectra. Small background features due to small deposits on the KBr windows were observed. Absorbance spectra of the sample were obtained by ratioing single beam spectra of the sample to background single beam spectra. All spectra were baseline corrected.

A 350 W high-pressure mercury arc lamp provided the ultraviolet light for photolysis experiments. The optical bench was equipped with a *f*/1 two-element UV fused silica condensing lens, an iris diaphragm, and a shutter. The light was filtered by a 10 cm water infrared radiation filter and a 3.8 ± 0.5 eV (325 ± 50 nm) band-pass filter. Thermopile measurements indicate that the photofluxes of the filtered UV light were 7.4 × 10¹⁶ photons cm⁻² s⁻¹ ± 10%. Photochemistry and infrared measurements were conducted simultaneously without disturbing the position of the cell or UV lamp. This was done by orienting the UV light source perpendicular to the infrared beam. The tungsten grid was aligned such that the infrared beam and the UV light were focused at a 45° angle to the normal of the grid.²⁸

Isotopically labeled ${}^{13}C{}^{18}O$ (Icon, 99% ${}^{13}C$, 95% ${}^{18}O$) and ${}^{13}C{}^{16}O$ (Cambridge, 99.5% ${}^{13}C$) were obtained in glass breakseal flasks and were used without further purification. Carbon dioxide (Matheson, 99.995%) and oxygen (Matheson, 99.998%) were obtained in steel cylinders and transferred to previously evacuated and baked glass bulbs and used without further purification. Hydrogen (Matheson, 99.9995%) was obtained in a steel cylinder and was also used without further purification.

3. Results

1. Photolysis of Rh^I(¹³C¹⁸O)₂/Al₂O₃ in CO₂. Infrared spectra corresponding to the photolysis of Rh^I(¹³C¹⁸O)₂ supported on Al₂O₃ in the presence of CO₂ at an equilibrium pressure of 1 Torr and a sample temperature of 256 K are shown in Figure 1. The initial spectrum measured prior to any UV light exposure ($t_{UV} = 0$ min) shows two infrared bands at 2003 and 1936 cm⁻¹ in the C–O region for the respective symmetric and antisymmetric stretching modes of isotopically labeled Rh^I(¹³C¹⁸O)₂ (rhodium gem-dicarbonyl).¹ The formation of isolated Rh^I(¹³C¹⁸O)₂ occurs from the disruption of metallic Rh in a reaction with isotopically labeled ¹³C¹⁸O and hydroxyl groups

Figure 1. Infrared spectra measured in the C–O stretching region during 1260 min of photolysis of $Rh^{1}(^{13}C^{18}O)_{2}/Al_{2}O_{3}$ in the presence of 1 Torr of CO₂ at 256 K. The arrows indicate the direction of the absorbance changes and shaded regions indicate new features.

(Al–OH) on the Al₂O₃ support.^{30,31} The infrared bands at 2003 and 1936 cm⁻¹ are appropriately shifted to lower frequencies compared to the unlabeled Rh^I(CO)₂ species with infrared bands at 2099 and 2028 cm⁻¹.^{32–38} (Note that the CO and CO₂ designation corresponds to ¹²C¹⁶O and ¹²C¹⁶O₂ in natural abundance.) A small band is observed at 2036 cm⁻¹ for Rh^I-(¹³C¹⁶O)(¹³C¹⁸O) species due to the 5% ¹³C¹⁶O impurity in the isotopically labeled ¹³C¹⁸O. A single infrared band centered at 2344 cm⁻¹ (not shown) is indicative of CO₂ adsorbed onto the Al₂O₃ support.^{39,40} (The intensity of this band, indicating the extent of CO₂ adsorption, varies with subtle changes in the temperature and did not necessarily reflect changes that occurred in the C–O stretching region.)

The UV lamp shutter was opened, allowing the sample to be irradiated, and infrared spectra were measured at the indicated times ($t_{\rm UV}$) during 1260 min of ultraviolet photolysis. The absorbance of the two bands at 2003 and 1936 cm⁻¹ continually decreases (the direction is shown by the heavy arrows), indicating the depletion Rh¹(¹³C¹⁸O)₂ species. The depletion is accompanied by the development of two overlapping infrared bands centered at 2077 and 2036 cm⁻¹ (shaded for better visualization). These bands lie within the C–O stretching region for various isotopic mixtures of rhodium carbonyl species.^{36,41} An infrared band growing at 1958 cm⁻¹ (also shaded) overlaps the band at 1936 cm⁻¹ for Rh¹(¹³C¹⁸O)₂ species

- (38) Solymosi, F.; Pásztor, M. J. Phys. Chem. 1985, 89, 4789.
- (39) Parkyns, N. D. J. Phys. Chem. 1971, 75, 526.
- (40) Peri, J. B. J. Phys. Chem. 1966, 70, 3168.
- (41) Knözinger, H.; Thornton, E. W.; Wolf, M. J. Chem. Soc., Faraday Trans. 1 1979, 75, 1888.

Figure 2. Comparison of carbonyl and bicarbonate/carbonate infrared stretching frequencies during photochemical activation and thermal adsorption of CO₂ on Rh¹($^{13}C^{18}O$)₂/Al₂O₃ at 256 K. The upper set of infrared spectra were measured during 1520 min of CO₂ exposure *in the absence* of ultraviolet light. The lower set of spectra (spectra from Figure 1) were measured during 1260 min *with* UV irradiation.

that is decreasing in intensity during irradiation. The formation of these bands is indicative of the activation of the C–O bond in CO_2 to produce rhodium gem-dicarbonyl species with various CO isotopomers.

To distinguish photochemical events from thermal events, the spectra measured during ultraviolet irradiation in Figure 1 are compared in Figure 2 to normalized infrared spectra measured during 1520 min of CO₂ exposure to Rh^I(¹³C¹⁸O)₂/Al₂O₃ at 256 K without exposure to ultraviolet light (upper set of spectra normalized to the absorbance at 2003 cm⁻¹ of the initial spectrum prior to photolysis). One observes that essentially no changes take place in the carbonyl stretching region for the infrared spectra recorded in the absence of ultraviolet light. However, bands develop at 1646, 1445, and 1228 cm^{-1} in both experiments. Bands in this region may be assigned to bicarbonate and carbonate species adsorbed on the Al₂O₃ support. Depending on the type of alumina and the degree of hydroxylation, the 1646 cm⁻¹ band, 1228 cm⁻¹ band, and features around 1470 cm⁻¹ are generally assigned to bicarbonate species produced in a reaction of CO₂ with hydroxyl groups.^{39,40,42} The feature at 1445 cm⁻¹ is assigned to "free" carbonates presumably produced in a reaction of CO₂ with surface oxide ions.^{39,42} Qualitatively similar spectral developments take place in the HCO₃/CO₃ region in both the irradiated and nonirradiated cases. No isotopically substituted bicarbonate or carbonate species are observed, indicating that the adsorption of CO₂ to form bicarbonates/carbonates is predominantly a support process occurring on the Al₂O₃ and is not dependent on the photochemically induced activation of CO₂ on Rh sites.

2. Isotopic Thermal Exchange: $Rh^{I}({}^{13}C^{18}O)_{2} + {}^{13}C^{16}O$. Infrared spectra measured during the thermal exchange of ${}^{13}C^{16}O$ with $Rh^{I}({}^{13}C^{18}O)_{2}/Al_{2}O_{3}$ are presented in Figure 3. The spectra shift systematically to higher frequency as the number of ${}^{13}C^{16}O$ molecules added is increased from 6×10^{18} molecules to 5×10^{19} molecules and the temperature is raised from 222 to 300 K. Similar to the isotopic exchange process with $Rh^{I}(CO)_{2}$ and ${}^{12}C^{18}O$ reported by Yates and Kolasinski, 36 six infrared bands are observed as the exchange takes place, representing three isotopic rhodium gem-dicarbonyl species: $Rh^{I}({}^{13}C^{18}O)_{2}$, $Rh^{I}({}^{13}C^{16}O)({}^{13}C^{18}O)$, and $Rh^{I}({}^{13}C^{16}O)_{2}$. Each species is responsible

⁽³⁰⁾ Basu, P.; Panayotov, D.; Yates, J. T., Jr. J. Phys. Chem. 1987, 91, 3133.

⁽³¹⁾ Basu, P.; Panayotov, D.; Yates, J. T., Jr. J. Am. Chem. Soc. 1988, 110, 2074.

⁽³²⁾ Yang, A. C.; Garland, C. W. J. Phys. Chem. 1957, 61, 1504.
(33) Yates, J. T., Jr.; Duncan, T. M.; Worley, S. D.; Vaughan, R. W. J.

<sup>Chem. Phys. 1979, 70, 1219.
(34) Yates, J. T., Jr.; Duncan, T. M.; Vaughan, R. W. J. Chem. Phys.</sup>

<sup>1979, 71, 3908.
(35)</sup> Cavanagh, R. R.; Yates, J. T., Jr. J. Chem. Phys. 1981, 74, 4150.
(36) Yates, J. T., Jr.; Kolasinski, K. J. Chem. Phys. 1983, 79, 1026.

 ⁽³⁷⁾ Rice, C. A.; Worley, S. D.; Curtis, C. W.; Guin, J. A.; Tarrer, A.
 R. J. Chem. Phys. **1981**, 74, 6487.

⁽⁴²⁾ Schubart, W.; Knözinger, H. Z. Phys. Chem. Neue Folge 1985, 144, 117.

Figure 3. Isotopic thermal exchange reaction between ${}^{13}C^{16}O$ gas and Rh^I(${}^{13}C^{18}O)_2/Al_2O_3$. Infrared spectra were recorded over a temperature range of 222–300 K while simultaneously increasing the number of ${}^{13}C^{16}O$ molecules added to the cell from 6 × 10¹⁸ molecules to 5 × 10¹⁹ molecules. The order of spectral recording (a–g) and direction of increasing ${}^{13}C^{16}O$ coverage are indicated by the arrow.

Figure 4. Comparison of ¹³C¹⁶O thermal isotopic exchange to photoassisted CO₂ activation. Part A: Selected difference spectra from Figure 3 measured during initial stages of ¹³C¹⁶O exposure. Part B: Difference spectra from Figure 1 measured during photolysis of CO₂ and Rh^I(¹³C¹⁸O)₂.

for two of the six infrared bands. The assignments and frequencies are indicated in Figure 3. Note that errors are inherent in the measurement of the frequencies for the mixed isotopic species, $Rh^{I}(^{13}C^{16}O)(^{13}C^{18}O)$, since the two infrared bands of this species are always overlapped by the neighboring features.

A more definitive picture of the sequential developments during thermal isotopic exchange is obtained by examining the difference spectra for the first stages of isotopic exchange shown in part A of Figure 4. The initial spectrum measured prior to ${}^{13}C^{16}O$ exposure (spectrum a) has been subtracted from the subsequent spectra. The negative development of spectral features indicate the depletion of Rh^I(${}^{13}C^{18}O$)₂ and positive developments indicate the isotopic exchange and increase in ${}^{13}C^{16}O$ content. Note that the frequencies of the developing bands do not shift as their absorbance increases.

Figure 5. Comparison of CO_2 activation to photoassisted oxidation of Rh^I($^{13}C^{18}O$)₂/Al₂O₃. Part A: Infrared spectra from Figure 1 measured during 1260 min of photolysis at 256 K. Part B: Infrared spectra recorded during 60 min of photolysis in the presence of 7.9 Torr of O₂ at 181 K.

Figure 4B shows difference spectra measured from Figure 1 during ultraviolet irradiation of RhI(13C18O)₂/Al₂O₃ in the presence of CO₂. Here also the initial spectrum ($t_{\rm UV} = 0$ min) has been subtracted from the subsequent spectra. Once again the formation of positive infrared features occurs at 2077, 2036, and 1958 cm⁻¹. The negative features represent the depletion of RhI(13C18O)₂ species. Note that the position of the 1958 cm⁻¹ feature shifts to lower frequency as the photolysis progresses. The dashed vertical lines are drawn to show the correlation with features developing during the thermal isotopic exchange in Figure 4A. The 2036 cm⁻¹ band measured during photolysis corresponds to the same frequency measured from the unsubtracted spectra of Figure 3 during isotopic exchange. The 1958 cm⁻¹ band is also in good agreement with the infrared band at 1955 cm⁻¹ of Figures 3 and 4A. The correlation shown in Figures 4A and 4B between these two experiments indicates that RhI(13C16O)(13C18O) species are produced during ultraviolet irradiation of $Rh^{I}({}^{13}C^{18}O)_2/Al_2O_3$ in the presence of $CO_2(g)$. The 2077 cm⁻¹ feature does not correlate with any infrared bands in the thermal isotopic exchange with ¹³C¹⁶O and is due to the activation of CO_2 to produce a ${}^{12}C^{16}O$ -containing surface carbonyl species. This is indicative of an additional photochemical process in which ${}^{12}C^{16}O_2$ is converted to a ${}^{12}C^{16}O$ ligand on Rh^I centers.

3. Comparison of CO₂ Photolysis to the Photoassisted Oxidation of Rh^I(¹³C¹⁸O)₂/Al₂O₃. In an effort to support the assignment of the 2077 cm⁻¹ feature to a ¹²C¹⁶O-containing species during ultraviolet irradiation of CO₂ rather than to ¹³C¹⁶O-containing species, the photoassisted oxidation of Rh^I-(¹³C¹⁸O)₂/Al₂O₃ was conducted with ¹⁶O₂(g) as shown in Figure 5. Part A of Figure 5 displays the infrared spectra measured during CO₂ photolysis in Figure 1. The photoreaction of Rh^I-(¹³C¹⁸O)₂/Al₂O₃ in the presence of 7.9 Torr of O₂ at 181 K is presented in Figure 5B. One observes two new infrared bands growing at 2055 and 2022 cm⁻¹ during 60 min of photolysis in oxygen which do not correspond to the features developing during CO₂ activation, as shown by the dashed lines. Therefore the 2077 cm⁻¹ band observed in Figure 5A does not correspond to a ¹³C¹⁸O-containing species that has been converted to a

 Table 1.
 Spectroscopic Assignment of Rhodium gem-Dicarbonyl Species

$\begin{pmatrix} (1) \\ k_1 \end{pmatrix} \begin{pmatrix} k_2 \\ (2) \\ k_1 \end{pmatrix} \begin{pmatrix} (4) \\ (3) \\ k_1 \end{pmatrix} \begin{pmatrix} (4) \\ k_1 \end{pmatrix} \begin{pmatrix} (4) \\ k_1 \end{pmatrix} \begin{pmatrix} (4) \\ (2) \\ (2) \\ k_1 \end{pmatrix} \begin{pmatrix} (4) \\ (2) $										
Species	v _{sym}	v_{asym}	k_1	<i>k</i> ₂	Ref.					
	cm ⁻¹		$(dyne \ cm^{-1}) \times 10$)-6					
¹⁶ O ¹² C ¹² C ¹⁶ O										
Rh ^I	2099	2028	1.721	0.059	[1-6,27-38]					
¹⁸ O ¹³ C ¹³ C ¹⁸ O										
Rh ^I	2003	1936	1.726	0.059	This work, [1]					
¹⁶ O ¹³ C ¹³ C ¹⁶ O										
Rh ^I	2048	1981			This work, [41]					
(incomplete substitution)										
¹⁶ O ¹² C ¹³ C ¹⁸ O										
Rh ^I	2077	1958			This work					
	(2074)	(1955)	(calculated)							
¹⁶ O ¹³ C ¹³ C ¹⁸ O										
Rh ^I	2036	1955			This work					
	(2034)	(1949)	(calculate	d)						
¹⁶ O ¹² C ¹³ C ¹⁶ O										
Rh ^I	h ^I (unobservable)									
	(2082)	(1998)	(calculate	d)	This work, [41]					

¹³C¹⁶O-containing species by photoreaction with ¹⁶O₂. Instead it corresponds to the symmetric stretch of the ¹²C¹⁶O-containing species originating from the photoreaction of Rh^I(¹³C¹⁸O)₂ with CO₂ (see Table 1). The 1958 cm⁻¹ band corresponds to the antisymmetric stretching mode of the same Rh^I(¹²C¹⁶O)(¹³C¹⁸O) species (see Table 1). On the basis of this experimental comparison of the photochemical reaction of Rh^I(¹³C¹⁸O)₂ with either CO₂ or O₂, we assign the 2036 cm⁻¹ band produced under CO₂ to the species Rh^I(¹³C¹⁶O)(¹³C¹⁸O) that originates from a CO exchange process in which the dominant gas-phase isotopomer, ¹³C¹⁸O, has exchanged with Rh^I(¹³C¹⁶O)(¹²C¹⁶O). These processes are summarized in Figure 6. The new infrared bands at 2055 and 2022 cm⁻¹ are tentatively assigned to oxidized Rh– (¹³C¹⁸O) species and will be the subject of a subsequent publication.⁴³

4. Discussion

1. Photochemistry of $Rh^{I}({}^{13}C^{18}O)_2/Al_2O_3$ in Carbon Dioxide. The production of coordinatively unsaturated $Rh^{I}(CO)$ sites occurs as a result of the loss of a CO ligand during the ultraviolet photolysis of $Rh^{I}(CO)_2/Al_2O_3$. Here we have utilized this process to photochemically activate the C–O bond of CO₂ on $Rh^{I}(CO)$ catalyst sites.

During the ultraviolet photolysis of nonlabeled $Rh^{I}(CO)_{2}/Al_{2}O_{3}$ in the presence of CO_{2} (not presented), essentially no frequency changes were detected in the gem-dicarbonyl infrared

bands. To spectroscopically observe the activation of CO₂ on Rh^I(CO)₂, isotopically labeled Rh^I($^{13}C^{18}O$)₂/Al₂O₃ was employed (Figure 1). Irradiation of Rh^I($^{13}C^{18}O$)₂/Al₂O₃ in CO₂ resulted in the formation of new carbonyl bands at 2077, 2036, and 1958 cm⁻¹ indicative of new isotopomers of Rh^I(CO)₂ containing ($^{12}C^{16}O$), ($^{13}C^{16}O$), and ($^{13}C^{18}O$) ligands created during CO₂ activation.

2. Identification of the Rh–CO Species Produced during CO₂ Activation. The dissociation of CO_2 on Rh¹($^{13}C^{18}O)_2$ /Al₂O₃ resulted in the formation of the following mixed isotopic gem-dicarbonyl species each exhibiting two spectral lines as shown:

The assignments are based on the frequencies of the infrared bands developing during photolysis, and the correlation with bands developing during the thermal isotopic exchange experiment (Figures 3 and 4). The infrared bands at 2036 and 1955 cm⁻¹ measured during thermal exchange with ¹³C¹⁶O agree closely in frequency with the bands at 2036 and 1958 cm⁻¹ measured during CO₂ activation, indicating the formation of Rh^I(¹³C¹⁶O)(¹³C¹⁸O) in both cases. The infrared band at 2077 cm⁻¹ corresponds to a ¹²C¹⁶O-containing species. The frequency is too low to be assigned to the symmetric stretching mode associated with unlabeled Rh^I(CO)₂/Al₂O₃, occurring at 2099 cm⁻¹.^{32–38} It will be assigned to the high-frequency mode of Rh^I(¹²C¹⁶O)(¹³C¹⁸O), with the low-frequency mode occurring near 1958 cm⁻¹.

Unfortunately, two expected bands are not distinguishable in the 1955–1958 cm⁻¹ region for the two rhodium gemdicarbonyl isotopomer species shown in structures **1** above. This is due to the strong negative intensity losses of the overlapping infrared band of Rh^I(¹³C¹⁸O)₂ and to the close proximity of the two expected bands. By careful examination of the difference spectra displayed in Figure 4B, one can see the slight shift of the 1958 cm⁻¹ feature to lower frequency as more Rh^I(¹³C¹⁶O)-(¹³C¹⁸O) species are produced by longer photochemical activation periods.

The $C_{2\nu}$ structure of Rh^I(CO)₂ species on the Al₂O₃ support is well established.^{32–38} The surface Rh^I(CO)₂ species exist at the coverages investigated here as isolated, noninteracting species since no shift in wavenumber is observed as spectral features intensify during increasing adsorption of CO.³⁶ Following the method by Knözinger et al.,⁴¹ the frequencies of the high- and low-frequency components of the various isotopic Rh^I(CO)₂ ($C_{2\nu}$) may be predicted by solving the following secular equation

$$\begin{vmatrix} k_1(\mu_1 + \mu_2) - 4\pi^2 \nu^2 & k_2(\mu_1 + \mu_2) \\ k_2(\mu_3 + \mu_4) & k_1(\mu_3 + \mu_4) - 4\pi^2 \nu^2 \end{vmatrix} = 0 \quad (1)$$

where μ_i is the reciprocal mass of the *i*th atom $(1 = 0; 2 = C; 3 = C; 4 = 0); \mu_i = 1/m_i$, where m_i is the mass of the *i*th atom; k_1 = force constant for the C–O stretch; and k_2 = force constant for the CO–CO coupling. By using the observed symmetric and antisymmetric stretching frequencies for Rh^I(CO)₂, the values of k_1 and k_2 were determined. The same was done for Rh^I(¹³C¹⁸O)₂, and the agreement is excellent for the independent measurements, as shown in Table 1. With use of the average k_1 and k_2 values calculated above, ν_{sym} and ν_{asym} of the mixed isotope rhodium gem-dicarbonyl species were determined and

⁽⁴³⁾ Paper submitted to J. Am. Chem. Soc.

Figure 6. Proposed mechanism for the activation of CO_2 on photochemically generated Rh¹($^{13}C^{18}O$) sites.

are listed in Table 1 along with the experimentally measured frequencies. Discrepancies between calculated and measured frequencies $[-3 \text{ cm}^{-1} \text{ and } -3 \text{ cm}^{-1} \text{ for Rh}^{I}(^{12}\text{C}^{16}\text{O})(^{13}\text{C}^{18}\text{O});$ -2 cm⁻¹ and -6 cm⁻¹ for Rh $^{I}(^{13}\text{C}^{16}\text{O})(^{13}\text{C}^{18}\text{O})]$ are within expectations considering the experimental difficulties encountered when determining precise frequencies for the overlapping bands.

3. The Formation of a Rh^I(CO)(CO₂) Complex. The activation of CO₂ requires the coordination of CO₂ onto a Rh center. Several transition metal complexes have been prepared that utilize CO₂ as ligands.^{9–11} The type of coordination depends on the metal, ligands, and surrounding conditions. On a single metal site, three basic types of bonding may occur between the metal and CO₂, labeled here as Type I, Type II, and Type III, as shown below:

Type I complexes represent η^1 bonding between the metal center and CO₂. Electron density is donated by the metal center to the carbon atom of CO₂. Complexes of Type II involve η^2 bonding, or side-on bonding, between the metal center and the carbon atom and an oxygen atom of CO₂. It is often not possible to distinguish three-membered ring bonding from π -complexing since the structures are spatially similar. Type III (end-on) complexes involve coordination of CO₂ only through lone pairs of an oxygen atom, and this is considered to be the least probable type of complexing.^{9–11} For Types I and II complexes, a bent geometry is adopted for the CO₂. The linear geometry for CO₂ is retained in Type III complexes.

The type of CO₂ complex may be deduced from the infrared spectra. In general, two infrared stretching bands are observed for the antisymmetric and symmetric stretching modes of metal-coordinated CO₂. The antisymmetric stretching mode, ν_{asym} , falls into the range 1800–1500 cm⁻¹ and the symmetric mode, ν_{sym} , occurs in the range 1600–1100 cm⁻¹.⁹ The infrared bands for Rh(diars)₂(Cl)(CO₂) [diars = *o*-phenylene-bis(dimethylars-

ine)] Type I complex with η^1 bonding were reported at 1610 and 1210 cm⁻¹.¹⁴ Rh–(CO₂) complexes with η^2 bonding (sideon) exhibit infrared bands in the ranges 1798–1630 and 1592– 1120 cm⁻¹ for each mode.^{15,16} There are no examples of Rh complexes that exhibit Type III (end-on) bonding with a CO₂ ligand.

During the activation of CO₂ on Rh^I(¹³C¹⁸O)₂/Al₂O₃, infrared features are observed between 1800 and 1200 cm^{-1} (Figure 2). These modes have been assigned to bicarbonate and carbonate species produced when CO₂ adsorbs onto the Al₂O₃ support. Although the frequencies of these spectral bands correspond to the frequency ranges listed for CO2 coordinated on Rh, no new features or outstanding differences in line shape are observed when comparing the photoactivation of CO₂ to the adsorption of CO₂ in the absence of ultraviolet light (Figure 2). Only a slight increase in the amount of bicarbonate/carbonate produced is detected during the photoactivation of CO₂. Since spectral features corresponding to any known mode of CO₂ bonding to Rh centers are not observed, we conclude that these intermediate species are of low surface concentration and/or that they exhibit low extinction coefficients compared to the carbonyl ligands in $Rh^{I}(CO)_{2}$.

The assignments of the bicarbonate/carbonate modes and the frequency ranges for transition metal $-CO_2$ complexes are summarized in Table 2.

4. Mechanism for CO₂ Activation. Due to its isolated nature and to its ionic character, the chemistry of rhodium gemdicarbonyl species better resembles the chemistry of organometallic complexes than the chemistry of CO chemisorbed on metallic surfaces. The proposed mechanism for CO₂ activation on $Rh^{I}(^{13}C^{18}O)_{2}/Al_{2}O_{3}$ is shown in Figure 6 (the isotopic labels are indicated by an asterisk). The photolysis of Rh^I(¹³C¹⁸O)₂ species results in the reversible loss of a carbon monoxide ligand to form coordinatively unsaturated RhI(13C18O) sites. These sites may either adsorb a 13C18O molecule from the gas phase to regenerate gem-dicarbonyls or coordinate with CO2. The formation of an intermediate Type I complex with η^1 coordination between the Rh center and the carbon atom of CO₂ is postulated. If the coordination occurred though η^2 bonding, as in the Type II complex, one would expect to see the formation of oxidized Rh^{II} or Rh^{III} carbonyl species following CO₂

Table 2. Spectroscopic Assignment of Bicarbonate/Carbonate Modes and Transition Metal Carbon Dioxide Modes

species	cm^{-1}	cm^{-1}	cm^{-1}		ref
HCO ₃ ⁻ CO ₃ ²⁻	1648-1637	1470 - 1490 1450	1230-1238		39,40,42 39,42
HCO ₃ ⁻ /CO ₃ ²⁻	1646	1445	1228		This work
species		bonding	$ u_{\rm asym},{\rm cm}^{-1}$	$\nu_{ m sym}$, cm $^{-1}$	ref
transition metal carbonyl complexes of CO ₂			1800-1500	1600-1100	9
$Rh(diars)_2(Cl)(CO_2)^a$		η^1	1610	1210	14
$Rh[P(n-Bu)_3]_2(Cl)(CO_2)$ (isomers)		η^2	1668,1630	1165,1120	16
$Rh[HC(CH_2CH_2P(t-Bu)_2)_2](CO_2)$		η^2	1798	1592	15

^{*a*} [diars = o-phenylene-bis(dimethylarsine)].

activation, as shown below:

No stable oxidized rhodium carbonyl species were produced during CO₂ activation, as indicated by the observation that there was no correlation between the infrared features observed during CO₂ activation and the features detected when Rh^I($^{13}C^{18}O$)₂/ Al₂O₃ was irradiated with ultraviolet light in the presence of oxygen (Figure 5). The lack of formation of oxidized rhodium carbonyl species suggests that η^2 bonding does not occur during CO₂ coordination on Rh sites.

The η^1 bonding is favored by electron rich transition metals that can donate electron density into the π^* orbital of CO₂ thereby reducing the C=O bond strength.⁹⁻¹¹ Reversible η^1 coordination of CO₂ with a d⁸ Rh^I center leads to a high partial negative charge on the CO₂ fragment. The electron transfer causes CO₂ instability, and the CO₂ anionic fragment adopts a more energetically favorable bent geometry.^{7,9} Dissociation of CO₂ may then occur. In our case, the dissociation of CO₂ occurs by two postulated pathways. As shown in the reaction scheme of Figure 6, Path I involves the dissociation of a C–O bond in the CO₂ ligand and the liberation of an oxygen atom. The fate of the O atom cannot be determined in this work. Mixed isotopic rhodium gem-dicarbonyl species of the form Rh^I-(¹²C¹⁶O)(¹³C¹⁸O) are generated in the process. Path I represents the dominant activation channel.

Path II is responsible for the Rh^I(¹²C¹⁶O)(¹³C¹⁸O) and Rh^I-(¹²C¹⁶O)(¹³C¹⁶O) isotopic species. The production of a ¹³C¹⁶O-containing surface species is evidence for oxygen atom exchange occurring rapidly between the CO₂ fragment and the other CO ligand followed by either ¹⁸O or ¹⁶O loss. A similar oxygen transfer process was observed by Cooper and co-workers⁴⁴ with Fe(η -C₅H₅)(CO)₂(CO₂)⁻ complexes. Unfortunately we are not able to distinguish clearly between the two isotopic species produced in Path II. Both ¹²C¹⁶O-containing species yield unresolved symmetric stretching modes in the range 2082–2077 cm⁻¹. For Rh^I(¹²C¹⁶O)(¹³C¹⁶O), the antisymmetric mode is expected to be at 1998 cm⁻¹, and this is strongly overlapped by the intense 2003 cm⁻¹ mode of the original Rh^I(¹³C¹⁸O)₂ species. In addition, continuous exchange of surface dicarbonyls with the various isotopomers of gas-phase CO occurs as

(44) Lee, G. R.; Cooper, N. J. Organometallics 1985, 4, 794.

photolysis proceeds, and all mixed isotopic dicarbonyls are eventually produced.

The oxygen atoms generated during the dissociation presumably transfer to the aluminum oxide support. These oxygen atoms may assist in the formation of bicarbonate/carbonate species. Slightly more intensity was observed for the infrared bands for bicarbonate/carbonate during the photoactivation of CO_2 than for the thermal adsorption of CO_2 (Figure 2); however, there was no obvious evidence for the presence of isotopically labeled species. Raskó and Solymosi⁴⁵ reported that the photoinduced dissociation of CO_2 on Rh/TiO₂ surfaces is mediated by filling surface vacancy sites with oxygen atoms from CO_2 . A similar process may exist here with oxygen atoms filling vacant anion sites in the Al₂O₃ surface.

5. Conclusions

The following conclusions have been reached concerning the activation of CO_2 on coordinatively unsaturated $Rh^I(CO)$ sites produced photochemically from $Rh^I(CO)_2$.

(1) Carbon dioxide is activated on photochemically produced $Rh^{I}({}^{13}C^{18}O)$ sites to produce isotopically labeled rhodium gemdicarbonyls. The two major products show infrared bands at 2077 and 1958 cm⁻¹ assigned to the formation of $Rh^{I}({}^{12}C^{16}O)$ -(${}^{13}C^{18}O$) species and bands at 2036 cm⁻¹ and near 1958 cm⁻¹ assigned to the formation of $Rh^{I}({}^{13}C^{16}O)$.

(2) The formation of two unique isotopomers of the rhodium gem-dicarbonyl species containing ${}^{12}C^{16}O$ and ${}^{13}C^{16}O$ is indicative of two distinct pathways for CO₂ activation, as shown in Figure 6. Path I involves direct dissociation of the C–O bond in bound CO₂ ligands and Path II involves oxygen atom exchange between CO₂ and CO ligands followed by C–O bond dissociation in the exchanged CO₂ ligand.

(3) The surface intermediate involving CO₂ is postulated to have η^1 bonding between the Rh center and CO₂. Side-on or η^2 -type bonding is not observed since no oxidized rhodium carbonyl species are observed during CO₂ activation.

(4) This work demonstrates the first steps of a potential lowtemperature route for the conversion of CO_2 into other molecules on catalyst sites through CO formation with ultraviolet light as an energy source.

Acknowledgment. We thank the Department of Energy, Office of Basic Energy Sciences for support of this work.

JA9804114

⁽⁴⁵⁾ Raskó, J.; Solymosi, F. J. Phys. Chem. 1994, 98, 7147.